
Experimental Evaluation of a Planning
Language Suitable for Formal Verification?

Rick W. Butler1, César A. Muñoz2, and Radu I. Siminiceanu2

1 NASA Langley Research Center, Hampton, Virginia, USA.
2 National Institute of Aerospace, Hampton, Virginia, USA.

Abstract. The marriage of model checking and planning faces two seem-
ingly diverging alternatives: the need for a planning language expressive
enough to capture the complexity of real-life applications, as opposed to
a language simple, yet robust enough to be amenable to exhaustive verifi-
cation and validation techniques. In an attempt to reconcile these differ-
ences, we have designed an abstract plan description language, ANMLite,
inspired from the Action Notation Modeling Language (ANML) [17]. We
present the basic concepts of the ANMLite language as well as an au-
tomatic translator from ANMLite to the model checker SAL (Symbolic
Analysis Laboratory) [7]. We discuss various aspects of specifying a plan
in terms of constraints and explore the implications of choosing a robust
logic behind the specification of constraints, rather than simply propose
a new planning language. Additionally, we provide an initial assessment
of the efficiency of model checking to search for solutions of planning
problems. To this end, we design a basic test benchmark and study the
scalability of the generated SAL models in terms of plan complexity.

1 Introduction

Historically, the fields of planning and formal verification have had very little
interaction. As branches of Artificial Intelligence, planning and scheduling have
mainly focused on developing powerful search heuristics for efficiently finding
solutions to extremely complex, specialized problems that take into account in-
tricate domain specific information. Traditionally, this field and has been heavily
influenced by the goals of one of the major sponsoring agencies (NASA, Ames
Center) and its affiliated institutes (RIACS, JPL). The planning software pro-
duced is in a perpetual process of expansion to include the latest and fanciest
capabilities: re-planning, on-the-fly reconfiguration, resource allocation, etc.

These goals are often contrasting with the main purpose of our field of formal
verification. To make the planning software ready for space missions and pass
the certification process, the main thrust of our activities are in a completely
opposite direction: simplify, reduce complexity, understand the concepts, make
software amenable to exhaustive verification.
? Research funding was provided by the National Aeronautics and Space Administra-

tion under the cooperative agreement NCC-1-02043.

To this end, we seek to define a simple language that can be used to describe
planning problems. Hopefully, by drastically restricting the constructs in the
language, two benefits accrue: (1) the language will be easy to understand and
write, and (2) the language will lend itself to formal verification.

We have named the language ANMLite [4] because it was developed to sup-
port the analysis of planning domains described in the Action Notation Modeling
Language (ANML) [17] under development at NASA Ames[10]. ANML succeeds
other planning languages, such as PDDL [12] and NDDL, that have been used
in the software package EUROPA2 [2].

In ANMLite, a planning problem consists of a finite set of disjoint timelines,
a set of valid actions for each timeline, and a set of temporal constraints that
govern the correct scheduling of the actions. The constraints can be broadly
categorized into two groups. The first group is specified by a transition relation
and only involves actions on the same timeline. These constraints express the
valid succession of actions along the timeline. The transition relation disallows
overlapping actions and gaps on a timeline. The second category are general
constraints, expressed in some logic of choice, which specify cross-timeline rela-
tionships between actions. The temporal logic must be chosen with care. It has
to be rich enough to cover all the significant relations that can occur (such as
Allen temporal operators [1], a popular logic in planning), but simple enough to
avoid inconsistencies and ambiguities. Furthermore, since we seek to develop a
framework for formal verification, it must be translatable into a form suitable for
model checking or theorem proving. We are currently targeting the SAL model
checker [7].

SAL is a framework for combining different tools to calculate properties of
concurrent systems. The SAL language is designed for specifying concurrent
systems in a compositional way. It is supported by a tool suite that includes state
of the art symbolic (BDD-based) and bounded (SAT-based) model checkers, and
a unique ”infinite” bounded model checker based on SMT solving. Auxiliary tools
include a simulator, deadlock checker, and an automated test case generator.

2 Related Work

To the best of our knowledge, formal verification work in planning and scheduling
has not been attempted before the initiation of the SAVH (Spacecraft Autonomy
for Vehicles and Habitats, now Automation for Operations, A4O) in 2005. There
exists previous work on adjacent topics, however.

Model checking has been applied in the context of logics with actions [14] and
knowledge representation [11]. The symbolic model checker of choice in this case
is NuSMV. Another related area of work is the use model checking for on-line
diagnosis of systems [5], applied in this particular case to the the study of the
Livingstone framework.

The avenue of using constraint solvers for planning problems has been ex-
plored in [16] (based on temporal interval logic and attributes) and [15] (solving
a particular class of disjunctive temporal problems via SAT solving techniques).

Test case generation for planning has been attempted in [9]. While testing is
not an exhaustive verification technique, it is always seen as complementary and
is mostly motivated by the need of low cost and performance. Finally, runtime
monitoring, a lightweight version of verification, has been applied to the fault
protection engine of the Deep-Impact spacecraft flight software [8].

3 ANMLite language concepts

We briefly describe the basic ANMLite concepts. The full syntax of the language
is given in the Appendix. For further information, an extensive discussion of the
ANMLite language semantics is given in the NASA Technical Memorandum [4].

3.1 Timelines and Actions

Discovering a suitable sequence of actions on a timeline is fundamental to solving
a planning problem. The first step in defining the problem is to identify all the
actions that can be scheduled on a timeline. In ANMLite, this is declared as in
the following example:

TIMELINE A ACTIONS
A0
A1: [_,10]
A2: [2,_]

This specification defines the timeline A and its three actions: A0, A1, and A2.
Actions A1 and A2 have time duration constraints: A1 takes at most 10 time units
and A2 takes at least 2 time units. Usually, there are also constraints on the se-
quence of actions, so an intuitive, unambiguous specification of these constraints
is highly desirable. There are two different approaches to the specification of
these constraints:

– Assume that all action sequences are possible unless specifically forbidden
and then specify the sequences that are not allowed.

– Assume that no sequences are allowed and then systematically add the al-
lowed sequences.

We have currently opted for the second approach. This is different from many
AI planning systems, but it follows the approach frequently used in the formal
methods community. We currently believe that this leads to a clearer specifica-
tion, though we recognize that we may be biased by the historic conventions of
our discipline.

3.2 Transitions

The transition relation on a timeline is similar to state-transition systems. Here,
the states are the actions and a directed edge represents a valid transition be-
tween states. We have used the same construction deployed in the Abstract Plan
Preparation Language (APPL) [3]. Hence, the transition relation is a set of pairs
of actions, which can be declared by listing for each action the (complete) set of
its successors, as in the following example:

TRANSITIONS
A0 -> A1 -> A2 -> (A0 | A1 | A3)
A3 -> A2

The flexibility of the language is increased by allowing parametrization of
actions. For example, the following

A1(x,y: animal): [10,_]

defines an action A1 with two parameters of type animal that takes at least 10
units of time.

We allow more restrictive forms of transitions to be defined using a simple
parameter matching scheme, with implicitly declared variables. For example,

A1(cat,u) -> A2(u,_)

states that only A1 actions with a first parameter equal to cat are to be followed
by an A2 action and that the first parameter of A2, represented by the variable
u, must be equal to the second parameter of A1. Unless explicitly specified on a
different constraint, no other transition from A1 is allowed.

Multiple timeline instances are defined using a VARIABLE section:

VARIABLES
t1, t2: A
t3: B

This specification declares two distinct instances, t1 and t2, defined by TIMELINE A,
and one instance t3 defined by TIMELINE B.

The variables of the same TIMELINE share the transition relation, but might
still behave differently, in case specific constraints are declared in the general
constraint section. This is beneficial in terms of keeping the model compact, and
it is frequently seen in practice.

3.3 Goal Statements and Initialization

In ANMLite, goals can be specified by an action name. Initial states can also be
specified using an INITIAL-STATE declaration though they are not necessary.

INITIAL-STATE
|-> t1.A0
|-> t2.A1

This specifies that A0 is the first scheduled action on timeline t1 and that A1 is
the first scheduled action on timeline t2. A generic form is also allowed

INITIAL-STATE
|-> A.A0

This means that on every timeline of type A, A0 is the first scheduled action.

4 Constraints

The transition statements are adequate to specify the allowed sequences of ac-
tions on a timeline, but they cannot be used to specify constraints between
actions on different timelines. The constraint section is used to accomplish this.
The ANMLite constraints are built upon a simple but powerful foundation: lin-
ear inequations between the start and end timepoints of actions. Expressions
may contain at most one variable on each side of the relational operator, e.g.

A1.start + 16 < B2.end

Restricting the constraint language to these simple linear relationships enables
a very natural translation into the SAL model checking language (see Sec. 5).

4.1 Repetitive Actions

It is often the case that the same action is scheduled several times on a timeline.
For example, crew activities on a space station are mostly routine tasks repeated
every day, intertwined with other specific activities. Two occurrences of the
same action are distinct because they are scheduled at different time intervals.
There is a clear need to distinguish between these intervals when writing a set
of constraints, which can refer to all or just one of these instances. We consider
two approaches: (1) provide a new construct to establish a reference point for a
constraint (called the at expression) and (2) introduce the qualifier next for a
second occurrence of an action in the same constraint.

Neither of these two constructs were previously considered in planning lan-
guages, yet there is an obvious risk of ambiguities in their absence.

The at Expression. In the following example
at A0.start: BO.end < next A0.start

all actions that are active at the timepoint A0.start are the current ones. The
next instance after the completion of the current one is the next one. For example

B0 B0

A1 A0

B1 B1

A2

B0.start B0.end next A0.start next B0.end

A0

reference point

If the action is not active at the reference point, then the “current” is the last
completed one and the next is the first occurrence after the reference point.

B1B1

A0 A1 A0 A2

B1B0 B0

B1.start
reference point

next B1.start

It should also be noted that there is an implicit universal quantifier in every
constraint. If the reference point involves action A1 and A1 can occur multiple
times on a timeline, then this constraint applies every time A1 is scheduled.

4.2 Timeline Instance Specific Constraints

Constraints can be specialized by using a timeline variable in the constraint.
Suppose we have

VARIABLES
t1,t2: A
t3,t4: B

CONSTRAINTS
t1.A1.start < t4.B1.end

This constraint only affects timelines t1 and t4. But the constraint

A1.start < B1.end

is equivalent to four constraints:

t1.A1.start < t3.B1.end t1.A1.start < t4.B1.end
t2.A1.start < t3.B1.end t2.A1.start < t4.B1.end

4.3 Vacuous solutions

Consider the Allen logic operator A1 contains B1. A constantly debated issue
is whether the constraint can be satisfied by the following timeline

A0 A2

B0 B1 B2

Because the Allen operator has the implicit quantifiers FORALL A1: EXISTS B1:
A1 contains B1, this constraint can be vacuously met in case A1 is never sched-
uled. Whether this is desirable or not is a recurring theme in the plan spec-
ification domain. A non-ambiguous semantics should be chosen for all these
situations.

4.4 Summary of Constraint Semantics

There are two major issues that need to be resolved when interpreting a con-
straint in ANMLite:
– Determination of the time point from which the current and next instances

of an action can be disambiguated.
– Determination of which actions are universally quantified and which ones

are existentially quantified.

These issues are orthogonal and hence the most general solution allows an inde-
pendent specification of them. The first issue is handled by the at expression.
The second issue is handled by a syntactic convention, namely, that the last
term in the chain of inequalities determines the universally quantified action.
This choice is justified by the way the constraint checking has to performed (ef-
ficiently) in the SAL models. The other alternative, of attaching the universal
quantifier to the first term, is equally valid from the theoretical point of view.

5 Translating ANMLite to SAL

Although using a model checker might not be the most efficient means of finding
a solution to a planning problem, building a translator has provided a sanity
check on the meaning of the language constructs.

5.1 Simple Example

We will begin our look at the technique for translating ANMLite to SAL with a
very simple two timeline example:

PLAN ex1
TIMELINE A TIMELINE B
ACTIONS ACTIONS

A0: [2,_] B0: [2,_]
A1 B1: [1,10]
A2

TRANSITIONS TRANSITIONS
A0 -> A1 -> A2 B0 -> B1

END A END B

INITIAL-STATE GOALS
|-> A.A0 A.A2
|-> B.B0 B.B1
END ex1

Corresponding to the timeline and action declarations, the following types are
generated:

A_actions: TYPE = {A0, A1, A2, A_null};
B_actions: TYPE = {B0, B1, B_null};

In addition to the declared actions, a null state is created for each of the timelines.
There are two purposes for these extra states. They provide a means for the
completion of an action when the action has no successor and also a convenient
mechanism for recording when a goal state has been reached and completed on
each timeline.

The generated SAL model consists of three modules: module A_m, correspond-
ing to timeline A. module B_m to timeline B, and module Clock, which advances
time.

5.2 Multiple variables

If there are multiple variables of a timeline, say
VARIABLES

t1,t2: A

then a variable identifier type is generated,
A_ids: TYPE = {t1,t2};

and the module A_m is parametrized with the variable id
A_m[i: A_ids] : MODULE =

Furthermore, since each instance of the timeline is a separate module, all the local
and global variables in the parametrized module have to be arrays. For example,
a non-parametrized module A_m might include a variable for A0_start:

GLOBAL
A0_start: TM_rng;

The parametrized version has to be
GLOBAL
A0_start: ARRAY A_ids OF TM_rng;

This way, the start of A0 for instance t1 is referred to as A0_start[t1].

5.3 Modeling Time

Time is governed by the generic clock module. We have experimented with var-
ious implementations of this module. The most straightforward approach is to
have the clock module increment the current time by one time unit at each
step. This approach is very simple but is not scalable, because the system would
traverse a very large number of states that are identical with the exception of
the clock value. This state explosion problem is exacerbated by problems with
large planning horizons. A possible alleviation of problem is to allow the clock
to advance by larger amounts. However, this still does not rule out the traversal
of multiple states in an interval of time when nothing interesting happens (from
the point of view of action change). The best solution in this case is to use the
concept of timeouts [13] that model the event driven clocks. In this approach,
each timeline maintains a future clock value where an event is scheduled to occur,
and time jumps directly to the next interesting event. The timeouts are stored
in an array of timepoints and the clock module determines the next (minimum
value in the future) timeout.

The modules are composed asynchronously.

System: MODULE = A_m [] B_m [] Clock;

The SAL model checker will be used to search through all possible sequences
of actions on the timelines to find sequences which satisfy all of the constraints
specified in the ANMLite model. These constraints fall into two broad categories:

– Timing constraints that impact durations and start/stop times of actions.
– Simple relationships between start and end variables

The search is started at time 0 and proceeds forward in time until the planning
horizon TM_rng is reached.

5.4 Model Variables

The GLOBAL sections of all of the timeline modules contain variables which record
the action that is scheduled during the current time:

GLOBAL
A0_start: TM_rng,
B0_start: TM_rng,
B1_start: TM_rng,
B_state: B_actions,
A_state: A_actions,

The _state variables store the current action and the _start and _end variables
record the start and end times of the actions.

5.5 Transitions

The ANMLite TRANSITIONS section is the major focus of the translation process.
The SAL TRANSITIONS section is constructed from this part of the ANMLite
model. When a transition occurs, an action is completed and another transition
is initiated. No empty time slots are allowed. For example, the following

TRANSITIONS
A0 -> A1 -> A2

is translated into three SAL transitions, which are labeled as follows:

A0_to_A1: %% A0 -> A1
A1_to_A2: %% A1 -> A2
A2_to_A_null: %% A2 -> A_null

The first transition is guarded by the following expression:

A_state = A0
AND time >= A0_start + 2

The first conjunct ensures that this transition only applies when the current
action on the timeline is A0 and the second conjunct insures that the duration
of the action is at least 2 time units. This corresponds to the fact that A0 was
declared as A0: [2,_].

The GOALS statement is translated into the following SAL specification:

sched_sys: THEOREM
System |- AG(NOT(A_state = A_null AND B_state = B_null));

Since the “null” states can only be reached from the goal states (i.e., A2 and
B1), these efficiently record the fact that the appropriate goal has been reached
and completed on each timeline. Note that the ANMLite goal statement has
been negated. Therefore when the model checker is instructed to establish the
property, any counterexample provided by SAL will serve as a feasible realization
of the plan.

5.6 Translating Constraints

There are major conceptual differences between specifying constraints and check-
ing constraints that need to be reconciled. In principle, the specification is declar-
ative by nature and the modeler usually looks “forward” in time in expressing
what needs to happen in order for the plan to complete. The checking of the plan
is operational by nature, because start and end variables are assigned values
as they occur, hence testing that a constraint is valid cannot be performed until
the last timepoint has occurred. Therefore, in the checking of the constraints the
modeler has to look “backwards” in time.

For example, the constraint A.start < B.end < C.start cannot be estab-
lished when A starts. Even if B has not ended yet, its relationship to the start of
C cannot be established.

The mechanism of checking constraints with a model checker is based on
assigning and updating the values of timeline state and each action start and
end variables. This is performed at the timepoints when a timeline transitions
from one action to another, according to the TRANSTIONS section.

Repetitive actions require special care, as multiple occurrences of the same
actions will overwrite the values of the corresponding start and end variables,
so only the most recent one is actually available (and possibly the previous
occurrence, given that we allow the next qualifier).

For example, if there is a transition A1 -> A2 on timeline A, the following
updates are necessary:

– A_state’ = A2
– A1_end’ = time
– A2_start’ = time

A constraint is, in principle, applicable to all the transitions that affect the
variables present in the constraint expression. That is, a start variable is rele-
vant to entering an action, while the end variable is relevant to exiting an action.
Transition guards are generated for the events that are involved.

The general approach of translating constraints into transition guards con-
sists of determining the last timepoint in the chain and substituting that term
with the value of the system variable time. For example, in the constraint

A1.start + 4 < B1.start < C1.end

the last timepoint is C1_end. The transitions of relevance to this timepoint are
from a predecessor of C1 to C1.

6 Experiments

To instrument a scalability study for the model checker, we have explored two
options. On the one hand, we have already accumulated a small benchmark of
ANML models used for basic checks of the ANML operator semantics against
the EUROPA2 [2] implementation. On the other hand, the model checker is not

able to solve even moderately complex problems, with no more than a handful
of timelines. Therefore, we took the path of generating random models to fit into
the current range of capabilities of SAL.

6.1 Real Models

The small suite of examples includes 73 models designed to investigate the the
basic Allen temporal logic operators that are at the core of the EUROPA2 [2]
package. The main purpose was not the study of performance but to expose se-
mantics issues, inconsistencies in the solutions, and insights into the subtleties of
the logic (such as vacuous solutions, repetitive actions, the need for quantifiers,
etc). Additionally, a space station crew activities and a dock worker robots mod-
els have been developed. Even though not nearly as sophisticated as necessary
for practical purposes, they were still too complex to model check with SAL.

6.2 Random Models

The major challenge in using the “real” models is that it is very tedious and
time consuming to manually scale up the models (e.g. increase the number of
timelines, actions, constraints) in a meaningful way.

Instead, from the statistical point of view, it might be better to just generate
random models. They are obviously meaningless form the planning point of
view, but they are better from the experimental point of view, since they are
completely “unbiased”.

In our experiments, we used 3, 900 random models, generated by a small C
program which takes in a few parameters:

– the number of timelines, T ;
– the number of actions on a timeline, A;
– the number of transitions in a timeline, R;
– the number of constraints/Allen operators in the constraint section, C;

The transition graph is generated randomly. The program picks a source
and target action (without self loops) and adds an edge. For simplicity, the
constraints are all of the form endpoint + constant < endpoint , where endpoints
are randomly selected from the set: action.{start/end}.

A completely random generator would most likely produce a large number
of planning problems with no solution, as is the case of disconnected transition
graphs. Therefore, the random generation is “steered” towards more meaningful
setups. Instead of completely random graphs (which are likely to contain un-
reachable goal states), we always add the backbone chain A0 → A1 → . . . →
An−1 and make An−1 the goal state. This gives the model checker something
useful to work with and increases the probability of an existing solution.

The set of sample parameters is the following:

– T ∈ {1, 2, 3, 4, 5};
– A ∈ {3, 4, . . . , 10};

– R takes sample values between the minimal (backbone) graphs with A − 1
edges and the full graph with A(A−1)

2 edges. The test harness covers values
for the fraction of ”fullness” f ∈ {0, 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1}, that is

R = (A− 1) + f ·
(

A(A−1)
2 − (A− 1)

)
;

– C takes sample values from “nothing” to ”a lot”: {0, A
4 , A

3 , A
2 , A, 2A}.

6.3 Results

We ran our batch of experiments using SAL version 3.0 on a 64bit, 3.2 GHz ma-
chine with 8GB of memory running RH Enterprise Linux version 2.6.9-5ELsmp.
We collected the runtime for each model with the time command, using a time-
out of 30 minutes (after which the SAL instance was aborted).

Outcome. The analysis has to take into account the outcome of a run: a
solution is found, no solution is found, or the run is aborted when reaching the
timeout cutoff. Since the model checking query was set up as a negation of the
statement ”no solution exists”, in case a counterexample is found, it is then
displayed (which is a time-consuming operation for a model checker). Figure 1
shows the outcome breakdown for the runs, function of the four parameters in
the experiment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 4 3 2 1

pe
rc

en
ta

ge

#timelines

no solution
solution

timed out

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 9 8 7 6 5 4 3

pe
rc

en
ta

ge

#actions

no solution
solution

timed out

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 0.75 0.5 0.25 0

pe
rc

en
ta

ge

transition fullness

no solution
solution

timed out

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 1.5 1 0.75 0.5 0.25 0

pe
rc

en
ta

ge

constraint load

no solution
solution

timed out

Table 1. Outcome breakdown

We observe a few natural trends. The number of timeouts increases dra-
matically with the number of timelines, which is the largest contributor to the
complexity of a SAL model. The number of timeouts also increases with the
number of actions, but more interestingly, for the number of constraints, it first
peaks for an intermediate value, before dipping. We attribute this to the fact
that increasing the number of constraints is likely to reduce the chances of an
existing solution.

In terms of finding a solution, there is a mix of results. As seen above, more
timelines and more constraints decrease the possibility of a solution. The number
of actions has a small effect, while the number of transitions seems to favor the
existence of a solution. This can be attributed to the fact that more edges in the
transition graph would allow the reach of a goal state by “bypassing” actions
that are tied into unfeasible constraints.

In general, the generated models seem to be more likely to lack a solution
rather than have one. This is probably due to the “random” (that is often mean-
ingless) nature of the models.

Runtimes. Figure 2 shows the average runtime for six combinations of pa-
rameters. The trends are also mixed. While it is obvious that the runtime will
grow with the increase in the number of timelines and actions, the number of
transitions seems to have a negligible effect on the runtime. Also, the number of
constraints produces a peak in the middle and decreases for larger values.

The dependency on the number of timelines can be illustrated by the total
runtime of the script for the approximately 800 models for each value of T . It
took less than a day (23 hours) to finish the models with T = 1, more than two
days (51 hours) for T = 2, six and a half days (156 hours) for T = 3, ten days
(240 hours) for T = 4, and the case T = 5 is still running.

We also computed the averages in subcategories, corresponding to the exis-
tence of a solution or not. Both due to lack of space and also to the fact that the
comparison is unfair to the case when a solution exists (given that the model
checker spends more time constructing the counterexample), we left those graphs
out of this paper. The profile of the graphs is largely similar to the overall av-
erages, but is roughly scaled (down for no solution, up for an existing solution)
by a constant factor.

7 Conclusions

We are just making baby steps in this area. Traditional symbolic model check-
ing technology is not mature enough to handle complex applications. Yet, with
the help of more advanced techniques (timeout automata and other deductive
approaches, such as SMT solvers [6]), more progress can be made.

In general, we believe that there is a clear role for formal methods in de-
signing planning languages. While the powerful heuristics of the AI software are
more suited to efficiently find a solution, exhaustive techniques, such as model
checking, are obviously the only alternative to prove the lack of a solution. More-
over, in safety-critical applications, eliminating ambiguities in the specification

Average runtime (min)

 4
 3

 2
 1

#timelines

1
0.75

0.66
0.5

0.33
0.25

transition fullness

20
15
10
5
 0

Average runtime (min)

 4
 3

 2
 1

#timelines

2
1.5

1
0.75

0.66
0.5

0.33
0.25

constraint load

25
20
15
10
5
 0

Average runtime (min)

 3
 4

 5
 6

 7
 8

 9
#actions

1
0.75

0.66
0.5

0.33
0.25

transition fullness

15

10

5

Average runtime (min)

 3
 4

 5
 6

 7
 8

 9
#actions

2
1.5

1
0.75

0.66
0.5

0.33
0.25

constraint load

15
10
5

Average runtime (min)

 4
 3

 2
 1

#timelines
 4

 5
 6

 7
 8

 9
 10

#actions

25
20
15
10
5
 0

Average runtime (min)

0.75
0.66

0.5
0.33

0.25
0

trans. fullness

2
1.5

1
0.75

0.66
0.5

0.33
0.25

constraint load

15

10

5

Table 2. Average runtimes

language is a strong requirement. Our comparative study with EUROPA2 has
provided valuable insight and feedback to the designers to help them make the
planning language more robust and safe.

References

[1] James F. Allen and George Ferguson. Actions and Events in Interval Temporal
Logic. Technical Report TR521, University of Rochester, 1994.

[2] Tania Bedrax-Weiss, Conor McGann, Andrew Bachmann, Will Edington, and
Michael Iatauro. EUROPA2: User and Contributor Guide. Technical report,
NASA Ames Research Center, Moffett Field, CA, Feb 2005.

[3] Rick W. Butler and César A. Muñoz. An Abstract Plan Preparation Language.
Report NASA/TM-2006-214518, NASA Langley, NASA LaRC, Hampton VA
23681-2199, USA, 2006.

[4] Rick W. Butler, Radu I. Siminiceanu, and César A. Muñoz. The ANMLite lan-
guage and logic for specifying planning problems. Report TM-2007-215088, NASA
Langley, Hampton VA 23681-2199, USA, November 2007.

[5] Alessandro Cimatti, Charles Pecheur, and Roberto Cavada. Formal Verification
of Diagnosability via Symbolic Model Checking. In IJCAI, pages 363–369, 2003.

[6] Leonardo de Moura and Bruno Dutertre. Yices 1.0: An Efficient SMT Solver.
Technical report, SRI International, 2006. SMCOMP’06, http://yices.csl.sri.com.

[7] Leonardo de Moura, Sam Owre, and Natarajan Shankar. The SAL Lan-
guage Manual. Technical Report SRI-CSL-01-02, CSL Technical Report, 2003.
http://sal.csl.sri.com/documentation.shtml.

[8] Doron Drusinsky and Garth Watney. Applying Run-Time Monitoring to the
Deep-Impact Fault Protection Engine. In 28th IEEE/NASA Software Engineering
Workshop, page 127, 2003.

[9] Martin S. Feather and Ben Smith. Automatic Generation of Test Oracles – From
Pilot Studies to Application. Automated Software Engineering, 8(1):31–61, Jan-
uary 2001.

[10] Jeremy Frank and Ari Jonsson. Constraint-based Attribute and Interval Planning.
Journal of Constraints, 8:339–364, 2003.

[11] Alessio Lomuscio, Charles Pecheur, and Franco Raimondi. Automatic Verification
of Knowledge and Time with NuSMV. In IJCAI, pages 1384–1389, 2007.

[12] Drew McDermott and AIPS’98 IPC Committee. PDDL – the Planning Do-
main Definition Language. Technical report, Yale University, 1998. Available
at www.cs.yale.edu/homes/dvm, 1998.

[13] Sam Owre and Natarajan Shankar. Formal Analysis Methods for Spacecraft Au-
tonomy, Final Report. Technical Report SRI-17625, SRI International, 2007.

[14] Charles Pecheur and Franco Raimondi. Symbolic Model Checking of Logics with
Actions. In MoChArt 2006, pages 113–128, 2006.

[15] Hossein M. Sheini, Bart Peintner, Karem A. Sakallah, and Martha E. Pollack.
On Solving Soft Temporal Constraints Using SAT Techniques. In Principles and
Practice of Constraint Programming 11th International Conference, Sitges, Spain,
pages 607–621, October 2005.

[16] David E. Smith, Jeremy Frank, and Ari K. Jonsson. Bridging the Gap between
Planning and Scheduling. The Knowledge Engineering Review, 15(1):113–128,
2000.

[17] David E. Smith, Jeremy Frank, and Conor McGann. The ANML Language.
Technical report, NASA Ames, unpublished report, 2006.

A The ANMLite Syntax

A.1 Timeline declarations

<anml_def> ::= PLAN <identifier>
(<type_decl> | <timeline_decl> | <constraints_decl> |

<vars_decl>)*
[<inits_decl>]
[<goals_decl>]
END <identifier>

<type_decl> ::= TYPE (<simple_type_decl> | <compound_type_decl>)

<simple_type_decl>::= <identifier> = <type>

<compound_type_decl>::= <identifier> <parameters> [= <type>]

<type> ::= <basic_type> | <enumeration> | <interval> | <defined_type>

<basic_type> ::= INT | FLOAT |BOOL | STRING |

<enumeration> ::= [<identifiers>]

<identifiers> ::= <identifier> (, <identifier>)*

<identifier> ::= <ID>

<interval> ::= [<add_expression_or_nil> , <add_expression_or_nil>]

<add_expression_or_nil> ::= <additive_expression> | <nil>

<defined_type> ::= <identifier> <arguments>

<arguments> ::= [<strict_arguments>]

<strict_arguments> ::= "(" <expression_or_nil> (, <expression_or_nil>)* ")"

<expression_or_nil>::= <expression> | <nil>

<nil> ::= "_"

<parameters> ::= [strict_parameters()]

<strict_parameters>::= "(" <parameter> (; <parameter>)* ")"

<parameter> ::= <identifiers> ":" <type>

<timeline_decls> ::= TIMELINE <identifier> <parameters>
<actions_decl>
<transition_decl>
END <identifier>

<actions_decl> ::= ACTIONS (action_decl())+

<action_decl> ::= <identifier> <parameters> <duration_decl> [action_body()]

<duration_decl> ::= [":" <interval>]

<transitions_decl> ::= [TRANSITIONS (<transition_decl>)+]

<transition_decl> ::= <action>
((-> <action>)+ ["-|"] |

-> * "\" <action>
)

<action> ::= <simple_action> |

("(" <simple_action> ("|" <simple_action>)+ ")")

<simple_action> ::= <qualified_id> <arguments>

<start_end_var> ::= [NEXT] <identifier> <start_end>

<start_end> ::= ".start" | ".end"

<qualified_id> ::= <ID> (.<ID>)

<expression> ::=

A.2 Constraints

<constraints_decl> ::= CONSTRAINTS (<constraint_decl>)+

<constraint_decl> ::= (<at_formula> | <bool_formula>)

<at_formula> ::= [<at_expression>] <timepoint> <rel_op>
<timepoint> [<plusinteger>]

<timepoint> ::= (<start_end_term> | <integer>)

<start_end_term> ::= (next) <ID> <start_end> (<add_op> <integer>)

<add_op> ::= + | -

<bool_formula> ::= (<simp_bool_formula> ("&&" | "||" | "->")+
<simp_bool_formula>
| "!" <simp_bool_formula>
| <simp_bool_formula>

)

<simp_bool_formula> ::= <state_var> "==" <state> |
<state_var> "!=" <state>

<bin_logic_op> ::= "&&" | "||" | "->"

<at_expression> ::= at <qualified_id> (<start_end>)
(<strict_arguments>) :
<state_var> ::= <ID>
<state> ::= <ID>

<inits_decl> ::= INITIAL_STATE (init_decl)+
<goals_decl> ::= GOALS (goal_decl)+
<goal_decl> ::= <action>
<vars_decl> ::= VARIABLES (var_decl)+
<var_decl> ::= <identifiers> <COLON> <type> (= <integer>)
<init_decl> ::= |-> <action>

A.3 Condition and Effect Statements

<action_body> ::= "{" [condition()] [effect()] "}"

<condition> ::= "condition:" <expression>
<effect> ::= "effect:" <identifier> ":=" <expression>

